首页> 外文OA文献 >Direct imaging of monovacancy-hydrogen complexes in single graphitic layer
【2h】

Direct imaging of monovacancy-hydrogen complexes in single graphitic layer

机译:单一石墨中单一阴离子 - 氢配合物的直接成像   层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding how foreign chemical species bond to atomic vacancies ingraphene layers can advance our ability to tailor the electronic and magneticproperties of defective graphenic materials. Here we use ultra-high vacuumscanning tunneling microscopy (UHV-STM) and density functional theory toidentify the precise structure of hydrogenated single atomic vacancies in atopmost graphene layer of graphite and establish a connection between thedetails of hydrogen passivation and the electronic properties of a singleatomic vacancy. Monovacancy-hydrogen complexes are prepared by sputtering ofthe graphite surface layer with low energy ions and then exposing it briefly toan atomic hydrogen environment. High-resolution experimental UHV-STM imagingallows us to determine unambiguously the positions of single missing atoms inthe defective graphene lattice and, in combination with the ab initiocalculations, provides detailed information about the distribution oflow-energy electronic states on the periphery of the monovacancy-hydrogencomplexes. We found that a single atomic vacancy where each sigma-dangling bondis passivated with one hydrogen atom shows a well-defined signal from thenon-bonding pi-state which penetrates into the bulk with a (\sqrt 3 \times\sqrt 3)R30^ \circ periodicity. However, a single atomic vacancy with fullhydrogen termination of sigma-dangling bonds and additional hydrogenpassivation of the extended pi-state at one of the vacancy's monohydrogenatedcarbon atoms is characterized by complete quenching of low-energy localizedstates. In addition, we discuss the migration of hydrogen atoms at theperiphery of the monovacancy-hydrogen complexes which dramatically change thevacancy's low-energy electronic properties, as observed in our low-biashigh-resolution STM imaging.
机译:了解外来化学物种如何与原子空位石墨烯层结合,可以提高我们定制有缺陷的石墨材料的电子和磁性能的能力。在这里,我们使用超高真空扫描隧道显微镜(UHV-STM)和密度泛函理论来识别石墨最顶层石墨烯层中氢化的单原子空位的精确结构,并在氢钝化的细节与单原子空位的电子性质之间建立联系。通过用低能离子溅射石墨表面层,然后将其短暂暴露于原子氢环境中来制备单空位-氢络合物。高分辨率实验UHV-STM成像使我们能够明确确定缺陷石墨烯晶格中单个缺失原子的位置,并结合从头算术计算,提供了有关低能电子态在单空位-氢络合物周围的分布的详细信息。我们发现单个原子空位(其中每个sigma悬挂键被一个氢原子钝化)显示了一个清晰的信号,该信号来自非键合pi态,并以(\ sqrt 3 \ times \ sqrt 3)R30 ^渗透到主体中\ circ周期性。但是,具有单个氢原子的sigma-dangling键全氢终止和一个空位的单氢化碳原子之一处的扩展pi-态额外的氢钝化,其特征在于低能局域态的完全淬灭。此外,我们讨论了氢原子在单空位-氢络合物周围的迁移,这会极大地改变空位的低能电子性质,如在我们的低偏置高分辨率STM成像中所观察到的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号